Design, antimicrobial activity and mechanism of action of Arg-rich ultra-short cationic lipopeptides

富含精氨酸的超短阳离子脂肽的设计、抗菌活性及作用机制

阅读:8
作者:Federica Armas, Sabrina Pacor, Elena Ferrari, Filomena Guida, Thelma A Pertinhez, Antonello A Romani, Marco Scocchi, Monica Benincasa

Abstract

The increasing emergence of multidrug-resistant microorganisms represents one of the greatest challenges in the clinical management of infectious diseases, and requires the development of novel antimicrobial agents. To this aim, we de novo designed a library of Arg-rich ultra-short cationic antimicrobial lipopeptides (USCLs), based on the Arg-X-Trp-Arg-NH2 peptide moiety conjugated with a fatty acid, and investigated their antibacterial potential. USCLs exhibited an excellent antimicrobial activity against clinically pathogenic microorganisms, in particular Gram-positive bacteria, including multidrug resistant strains, with MIC values ranging between 1.56 and 6.25 μg/mL. The capability of the two most active molecules, Lau-RIWR-NH2 and Lau-RRIWRR-NH2, to interact with the bacterial membranes has been predicted by molecular dynamics and verified on liposomes by surface plasmon resonance. Both compounds inhibited the growth of S. aureus even at sub MIC concentrations and induced cell membranes permeabilization by producing visible cell surface alterations leading to a significant decrease in bacterial viability. Interestingly, no cytotoxic effects were evidenced for these lipopeptides up to 50-100 μg/mL in hemolysis assay, in human epidermal model and HaCaT cells, thus highlighting a good cell selectivity. These results, together with the simple composition of USCLs, make them promising lead compounds as new antimicrobials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。