The KCa3.1 blocker TRAM34 reverses renal damage in a mouse model of established diabetic nephropathy

KCa3.1 阻滞剂 TRAM34 可逆转已确诊糖尿病肾病的小鼠模型中的肾脏损伤

阅读:4
作者:Chunling Huang, Ling Zhang, Ying Shi, Hao Yi, Yongli Zhao, Jason Chen, Carol A Pollock, Xin-Ming Chen

Abstract

Despite optimal control of hyperglycaemia, hypertension, and dyslipidaemia, the number of patients with diabetic nephropathy (DN) continues to grow. Strategies to target various signaling pathways to prevent DN have been intensively investigated in animal models and many have been proved to be promising. However, targeting these pathways once kidney disease is established, remain unsatisfactory. The clinical scenario is that patients with diabetes mellitus often present with established kidney damage and need effective treatments to repair and reverse the kidney damage. In this studies, eNOS-/- mice were administered with streptozotocin to induce diabetes. At 24 weeks, at which time we have previously demonstrated albuminuria and pathological changes of diabetic nephropathy, mice were randomised to receive TRAM34 subcutaneously, a highly selective inhibitor of potassium channel KCa3.1 or DMSO (vehicle) for a further 14 weeks. Albuminuria was assessed, inflammatory markers (CD68, F4/80) and extracellular matrix deposition (type I collagen and fibronectin) in the kidneys were examined. The results clearly demonstrate that TRAM34 reduced albuminuria, decreased inflammatory markers and reversed extracellular matrix deposition in kidneys via inhibition of the TGF-β1 signaling pathway. These results indicate that KCa3.1 blockade effectively reverses established diabetic nephropathy in this rodent model and provides a basis for progressing to human studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。