Investigation of the Protective Effect of Extracellular Vesicle miR-124 on Retinal Ganglion Cells Using a Photolabile Paper-Based Chip

利用光不稳定纸基芯片研究细胞外囊泡 miR-124 对视网膜神经节细胞的保护作用

阅读:6
作者:Yi-Hsun Chen, Yu Chuan Huang, Chih-Hung Chen, Yao-Tseng Wen, Rong-Kung Tsai, Chihchen Chen

Conclusions

Our research team has developed a paper-based chip capable of capturing EVs that can be released after UV exposure. The quantity and quality of EV-miRNAs extracted are adequate for microarray and quantitative RT-PCR analyses. Animal studies suggest that miR-124 may play a neuroprotective role in the natural recovery of rNAION and holds the potential to be a novel treatment option.

Methods

rNAION was established using laser-induced photoactivation of rose bengal administered intravenously. On days 0, 0.25, 1, 3, and 7 after rNAION induction, CD63-positive EV microRNAs (CD63+-EV miRNAs) in vitreous humor samples were enriched using the paper chip and assessed using microarray and quantitative RT-PCR analyses. The viability and visual function of retinal ganglion cells (RGCs) were further assessed by measuring photopic flash visual evoked potentials (FVEPs).

Purpose

Photolabile paper-based chips were developed to isolate extracellular vesicles (EVs) from small-volume samples (less than 30 µL), such as vitreous humor. Putative neuroprotective effects of EVs' microRNAs were investigated by using the paper chip and a rodent model with nonarteritic anterior ischemic optic neuropathy (rNAION).

Results

We identified 38 different variations of CD63+-EV miRNAs with more than twofold altered expressions. Among them, M1-related miRNA, mR-31a-5p, and M2-related miRNA, miR-125a-5p, miR-182, miR-181a-5p, and miR-124-3, were capable of coordinating anti-inflammatory reactions during rNAION because of their capacity to activate macrophages. In particular, miR-124, having the most dramatic alteration of gene expression, was synthesized and injected intravitreally. Compared to controls, rats that received miR-124 had shown increased RGC survivability and improved visual function. Conclusions: Our research team has developed a paper-based chip capable of capturing EVs that can be released after UV exposure. The quantity and quality of EV-miRNAs extracted are adequate for microarray and quantitative RT-PCR analyses. Animal studies suggest that miR-124 may play a neuroprotective role in the natural recovery of rNAION and holds the potential to be a novel treatment option.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。