Changes in fibroblast mechanostat set point and mechanosensitivity: an adaptive response to mechanical stress in floppy eyelid syndrome

成纤维细胞机械稳态设定点和机械敏感性的变化:眼睑松弛综合征对机械应力的适应性反应

阅读:5
作者:Daniel G Ezra, James S Ellis, Michèle Beaconsfield, Richard Collin, Maryse Bailly

Conclusions

These changes may represent an adaptive response that allows tensional homeostasis to be maintained at the high levels of tissue stress experienced in FES. Gene expression studies point to a role for V-CAM1 and PPP1R3C in mediating changes in the dynamic range of mechanosensitivity of TFs. This work identifies FES as a useful model for the study of adaptive physiological responses to mechanical stress.

Methods

Contractile efficiency was investigated in a free-floating, three-dimensional collagen matrix model. Intrinsic cellular force measurements and responses to changes in gel tension were explored using a tensioning culture force monitor (t-CFM). Gene expression differences between cell lines exhibiting differences in contractile phenotype were explored with a genome level microarray platform and RT-PCR.

Purpose

Floppy eyelid syndrome (FES) is an acquired hyperelasticity disorder affecting the upper eyelid. The tarsal plate becomes hyperelastic with a loss of intrinsic rigidity. As a result, the eyelid is subjected to cyclic mechanical stress. This condition was used as a model to investigate changes in dynamic fibroblast contractility in the context of chronic cyclic mechanical stress.

Results

FES tarsal plate fibroblasts (TFs) showed an increased contractile efficiency compared with the control, and t-CFM measurements confirmed a higher intrinsic cellular force at plateau levels. Cyclic stretch/relaxation experiments determined that TFs in FES maintained a functional tensional homeostasis response but with an altered sensitivity, operating around a higher mechanostat set point. Gene expression array and RT-PCR analysis identified V-CAM1 and PPP1R3C as being upregulated in FES TFs. Conclusions: These changes may represent an adaptive response that allows tensional homeostasis to be maintained at the high levels of tissue stress experienced in FES. Gene expression studies point to a role for V-CAM1 and PPP1R3C in mediating changes in the dynamic range of mechanosensitivity of TFs. This work identifies FES as a useful model for the study of adaptive physiological responses to mechanical stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。