Proteomics Reveals Mechanisms of Delayed Keratoconus Progression: A Study of Corneas Following Two Light-Activated Crosslinking Treatments

蛋白质组学揭示圆锥角膜进展延迟的机制:对接受两次光激活交联治疗后的角膜进行研究

阅读:2
作者:Demi H J Vogels, Jurriaan Brekelmans, Ronny Mohren, Naomi R N Vos, Alexander Brandis, Arie L Marcovich, Berta Cillero-Pastor, Avigdor Scherz, Vanessa L S LaPointe, Mor M Dickman

Conclusions

Proteomics indicated a metabolic shift from oxidative phosphorylation to glycolysis and hypoxia after RF-D/UVA treatment. In contrast, WST-D/NIR stiffening maintained normal respiration and involved extracellular matrix remodeling.

Methods

Rabbit corneas were mechanically de-epithelialized, then left untreated (N = 3) or treated with either RF-D/UVA (N = 3) or WST-D/NIR (N = 3). After one week, quantitative proteomics was performed on untreated, RF-D/UVA- and WST-D/NIR-treated corneas. Pathway enrichment analysis was performed to identify the biological processes associated with the treatments. To identify the abundance and spatial distribution of lipids in the untreated, WST-D/NIR- and RF-D/UVA-treated corneal stroma, lipid mass spectrometry imaging was performed together with hematoxylin and eosin staining.

Purpose

This study aims to elucidate on changes in biological pathways in rabbit corneas induced by two

Results

Between RF-D/UVA- and WST-D/NIR-treated corneas, 37 and 39 proteins, respectively, were differentially expressed compared to untreated corneas (P < 0.05). Pathway enrichment analysis showed the effect of RF-D/UVA treatment on cell metabolism and terminal differentiation of keratocytes, while WST-D/NIR modified extracellular matrix regulation and the mitogen-activated protein kinase signaling cascade. When comparing the RF-D/UVA and WST-D/NIR treatment, 74 proteins were differentially expressed, affecting cellular metabolism and respiration, complement activation, the activation of matrix metalloproteinases, and lipoprotein metabolism. The lipid profile for the RF-D/UVA- and WST-D/NIR-treated stromas were similar, whereas differences were observed comparing both treatments to untreated corneal stroma. Conclusions: Proteomics indicated a metabolic shift from oxidative phosphorylation to glycolysis and hypoxia after RF-D/UVA treatment. In contrast, WST-D/NIR stiffening maintained normal respiration and involved extracellular matrix remodeling.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。