Abstract
C57Bl/6J mice are the gold standard animal model of diet-induced obesity. These animals become obese with higher adiposity, blood fasting glucose, triglycerides, and total cholesterol when fed a high-fat diet (HFD). Conversely, the FVB/N mouse line is thought to be resistant to diet-induced obesity, with low or no weight gain and adiposity in response to a HFD In this study, we investigated whether FVB/N mice are resistant or susceptible to metabolic disorder that is promoted by a HFD Biometric parameters and blood chemistry were analyzed in C57Bl/6J and FVB/N mice that were fed a chow diet or HFD Glucose and insulin sensitivity were assessed by performing the glucose tolerance test and measuring serum insulin/glucose and homeostasis model assessment-insulin resistance. Metabolism-related gene expression was investigated by real-time reverse transcription polymerase chain reaction. Adipocyte morphology and liver steatosis were evaluated using standard histology. FVB/N mice had higher adiposity than C57Bl/6J mice that were fed a chow diet and were glucose intolerant. FVB/N mice that were fed a HFD presented higher insulin resistance and greater liver steatosis. Epididymal white adipose tissue exhibited severe inflammation in FVB/N mice that were fed a HFD The FVB/N mouse strain is suitable for studies of diet-induced obesity, and the apparent lack of a HFD-induced response may reveal several strain-specific events that are triggered by a HFD Further studies of the FVB/N background may shed light on the complex multifactorial symptoms of obesity and metabolic syndrome.
