Altered membrane structure and surface potential in homozygous hemoglobin C erythrocytes

纯合血红蛋白 C 红细胞的膜结构和表面电位改变

阅读:6
作者:Fuyuki Tokumasu, Glenn A Nardone, Graciela R Ostera, Rick M Fairhurst, Steven D Beaudry, Eri Hayakawa, James A Dvorak

Background

Hemoglobin C differs from normal hemoglobin A by a glutamate-to-lysine substitution at position 6 of beta globin and is oxidatively unstable. Compared to homozygous AA erythrocytes, homozygous CC erythrocytes contain higher levels of membrane-associated hemichromes and more extensively clustered band 3 proteins. These findings suggest that CC erythrocytes have a different membrane matrix than AA erythrocytes. Methodology and findings: We found that AA and CC erythrocytes differ in their membrane lipid composition, and that a subset of CC erythrocytes expresses increased levels of externalized phosphatidylserine. Detergent membrane analyses for raft marker proteins indicated that CC erythrocyte membranes are more resistant to detergent solubilization. These data suggest that membrane raft organization is modified in CC erythrocytes. In addition, the average zeta potential (a measure of surface electrochemical potential) of CC erythrocytes was approximately 2 mV lower than that of AA erythrocytes, indicating that substantial rearrangements occur in the membrane matrix of CC erythrocytes. We were able to recapitulate this low zeta potential phenotype in AA erythrocytes by treating them with NaNO(2) to oxidize hemoglobin A molecules and increase levels of membrane-associated hemichromes.

Conclusion

Our data support the possibility that increased hemichrome deposition and altered lipid composition induce molecular rearrangements in CC erythrocyte membranes, resulting in a unique membrane structure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。