Spatial alterations of De Novo purine biosynthetic enzymes by Akt-independent PDK1 signaling pathways

Akt非依赖性PDK1信号通路对从头嘌呤生物合成酶的空间改变

阅读:1
作者:Danielle L Schmitt ,Anand Sundaram ,Miji Jeon ,Bao Tran Luu ,Songon An

Abstract

A macromolecular complex of the enzymes involved in human de novo purine biosynthesis, the purinosome, has been shown to consist of a core assembly to regulate the metabolic activity of the pathway. However, it remains elusive whether the core assembly itself can be selectively controlled in the cytoplasm without promoting the purinosome. Here, we reveal that pharmacological inhibition of the cytoplasmic activity of 3-phosphoinositide-dependent protein kinase 1 (PDK1) selectively promotes the formation of the core assembly, but not the purinosome, in cancer cells. However, alternative signaling cascades that are associated with the plasma membrane-bound PDK1 activity, including Akt-mediated cascades, regulate neither the core assembly nor the purinosome in our conditions. Along with immunofluorescence microscopy and a knock-down study against PDK1 using small interfering RNAs, we reveal that cytoplasmic PDK1-associated signaling pathways regulate subcellular colocalization of three enzymes that form the core assembly of the purinosome in an Akt-independent manner. Collectively, this study reveals a new mode of compartmentalization of purine biosynthetic enzymes controlled by spatially resolved signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。