An Automated Strategy for Unbiased Morphometric Analyses and Classifications of Growth Cones In Vitro

一种对体外生长锥进行无偏形态测量分析和分类的自动化策略

阅读:5
作者:Daryan Chitsaz, Daniel Morales, Chris Law, Artur Kania

Abstract

During neural circuit development, attractive or repulsive guidance cue molecules direct growth cones (GCs) to their targets by eliciting cytoskeletal remodeling, which is reflected in their morphology. The experimental power of in vitro neuronal cultures to assay this process and its molecular mechanisms is well established, however, a method to rapidly find and quantify multiple morphological aspects of GCs is lacking. To this end, we have developed a free, easy to use, and fully automated Fiji macro, Conographer, which accurately identifies and measures many morphological parameters of GCs in 2D explant culture images. These measurements are then subjected to principle component analysis and k-means clustering to mathematically classify the GCs as "collapsed" or "extended". The morphological parameters measured for each GC are found to be significantly different between collapsed and extended GCs, and are sufficient to classify GCs as such with the same level of accuracy as human observers. Application of a known collapse-inducing ligand results in significant changes in all parameters, resulting in an increase in 'collapsed' GCs determined by k-means clustering, as expected. Our strategy provides a powerful tool for exploring the relationship between GC morphology and guidance cue signaling, which in particular will greatly facilitate high-throughput studies of the effects of drugs, gene silencing or overexpression, or any other experimental manipulation in the context of an in vitro axon guidance assay.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。