Regulation of Nav1.7: A Conserved SCN9A Natural Antisense Transcript Expressed in Dorsal Root Ganglia

Nav1.7 的调控:在背根神经节中表达的保守 SCN9A 天然反义转录本

阅读:5
作者:Jennifer Koenig, Robert Werdehausen, John E Linley, Abdella M Habib, Jeffrey Vernon, Stephane Lolignier, Niels Eijkelkamp, Jing Zhao, Andrei L Okorokov, C Geoffrey Woods, John N Wood, James J Cox

Abstract

The Nav1.7 voltage-gated sodium channel, encoded by SCN9A, is critical for human pain perception yet the transcriptional and post-transcriptional mechanisms that regulate this gene are still incompletely understood. Here, we describe a novel natural antisense transcript (NAT) for SCN9A that is conserved in humans and mice. The NAT has a similar tissue expression pattern to the sense gene and is alternatively spliced within dorsal root ganglia. The human and mouse NATs exist in cis with the sense gene in a tail-to-tail orientation and both share sequences that are complementary to the terminal exon of SCN9A/Scn9a. Overexpression analyses of the human NAT in human embryonic kidney (HEK293A) and human neuroblastoma (SH-SY5Y) cell lines show that it can function to downregulate Nav1.7 mRNA, protein levels and currents. The NAT may play an important role in regulating human pain thresholds and is a potential candidate gene for individuals with chronic pain disorders that map to the SCN9A locus, such as Inherited Primary Erythromelalgia, Paroxysmal Extreme Pain Disorder and Painful Small Fibre Neuropathy, but who do not contain mutations in the sense gene. Our results strongly suggest the SCN9A NAT as a prime candidate for new therapies based upon augmentation of existing antisense RNAs in the treatment of chronic pain conditions in man.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。