p53-Dependent and cell specific epigenetic regulation of the polo-like kinases under oxidative stress

氧化应激下 p53 依赖性和细胞特异性的 polo 样激酶表观遗传调控

阅读:9
作者:Alejandra Ward, John W Hudson

Abstract

The polo-like kinase (PLKs) family, consisting of five known members, are key regulators of important cell cycle processes, which include mitotic entry, centrosome duplication, spindle assembly, and cytokinesis. The PLKs have been implicated in a variety of cancers, such as hepatocellular carcinoma (HCC), with PLK1 typically overexpressed and PLKs 2-5 often downregulated. Altered expression of the PLKs in malignancy is often correlated with aberrant promoter methylation. Epigenetic marks are dynamic and can be modified in response to external environmental stimuli. The aim of our study was to determine if oxidative stress, a common feature of solid tumours, would induce changes to the promoter methylation of the PLKs resulting in changes in expression. We examined the promoter methylation status via MSP and subsequent expression levels of the PLK family members under exposure to hypoxic conditions or reactive oxygen species (ROS). Interestingly, murine embryonic fibroblasts exposed to hypoxia and ROS displayed significant hypermethylation of Plk1 and Plk4 promoter regions post treatment. Corresponding proteins were also depleted by 40% after treatment. We also examined the HCC-derived cell lines HepG2 and Hep3B and found that for PLK1 and PLK4, the increase in hypermethylation was correlated with the presence of functional p53. In p53 wild-type cells, HepG2, both PLK1 and PLK4 were repressed with treatment, while in the p53 null cell line, Hep3B, PLK4 protein was elevated in the presence of hypoxia and ROS. This was also the case for ROS-treated, p53 null, osteosarcoma cells, Saos-2, where the PLK4 promoter became hypomethylated and protein levels were elevated. Our data supports a model in which the PLKs are susceptible to epigenetic changes induced by microenvironmental cues and these modifications may be p53-dependent. This has important implications in HCC and other cancers, where epigenetic alterations of the PLKs could contribute to tumourigenesis and disease progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。