Larger therapeutic window for steroid versus VEGF-A inhibitor in inflammatory angiogenesis: surprisingly similar impact on leukocyte infiltration

类固醇与 VEGF-A 抑制剂在炎症血管生成方面的治疗窗口更大:对白细胞浸润的影响惊人地相似

阅读:9
作者:Shintaro Nakao, Souska Zandi, Nuria Lara-Castillo, Mahdi Taher, Tatsuro Ishibashi, Ali Hafezi-Moghadam

Conclusions

VEGF-A inhibition affected angiogenic sprouting, while it was not effective against matured vessels. Both dexamethasone and bevacizumab inhibited leukocyte transmigration from angiogenic vessels; however, dexamethasone had a larger therapeutic window. These insights improve the treatment strategy in angiogenic disorders.

Methods

To investigate the therapeutic windows for dexamethasone and bevacizumab, we used the corneal pocket assay. IL-1β pellets were implanted in corneas of BALB/c mice that were then treated with dexamethasone or bevacizumab at different time points. Angiogenesis (area, number of vessels, and sprouting) was quantitated at various time points after implantation. Nuclear Factor-κB (NF-κB) signaling and leukocyte accumulation in inflammatory angiogenesis were examined by Western blotting, by immunohistochemistry, and in the authors' novel leukocyte transmigration assay.

Purpose

The current treatments against inflammatory angiogenesis are steroids and anti-VEGF-A, such as dexamethasone and bevacizumab, respectively. However, the therapeutic windows for dexamethasone and bevacizumab against inflammatory angiogenesis are unknown.

Results

Dexamethasone inhibited IL-1β-induced angiogenesis when treatment started 4 days after IL-1β implantation, while bevacizumab only inhibited angiogenesis by day 2 after implantation. Both bevacizumab and dexamethasone inhibited angiogenic sprouting. Interestingly, bevacizumab did not affect NF-κB activation, which is one of the main signaling targets for steroid action. The authors' new imaging approach revealed that bevacizumab and steroid treatment blocked leukocyte infiltration into implanted corneas. Conclusions: VEGF-A inhibition affected angiogenic sprouting, while it was not effective against matured vessels. Both dexamethasone and bevacizumab inhibited leukocyte transmigration from angiogenic vessels; however, dexamethasone had a larger therapeutic window. These insights improve the treatment strategy in angiogenic disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。