The design and delivery of a thermally responsive peptide to inhibit S100B-mediated neurodegeneration

设计和递送热响应肽以抑制 S100B 介导的神经退行性

阅读:4
作者:S M Hearst, L R Walker, Q Shao, M Lopez, D Raucher, P J S Vig

Abstract

S100B, a glial-secreted protein, is believed to play a major role in neurodegeneration in Alzheimer's disease, Down syndrome, traumatic brain injury, and spinocerebellar ataxia type 1 (SCA1). SCA1 is a trinucleotide repeat disorder in which the expanded polyglutamine mutation in the protein ataxin-1 primarily targets Purkinje cells of the cerebellum. Currently, the exact mechanism of S100B-mediated Purkinje cell damage in SCA1 is not clear. However, here we show that S100B may act via the activation of the receptor for advanced glycation end product (RAGE) signaling pathway, resulting in oxidative stress-mediated injury to mutant ataxin-1-expressing neurons. To combat S100B-mediated neurodegeneration, we have designed a selective thermally responsive S100B inhibitory peptide, Synb1-ELP-TRTK. Our therapeutic polypeptide was developed using three key elements: (1) the elastin-like polypeptide (ELP), a thermally responsive polypeptide, (2) the TRTK12 peptide, a known S100B inhibitory peptide, and (3) a cell-penetrating peptide, Synb1, to enhance intracellular delivery. Binding studies revealed that our peptide, Synb1-ELP-TRTK, interacts with its molecular target S100B and maintains a high S100B binding affinity as comparable with the TRTK12 peptide alone. In addition, in vitro studies revealed that Synb1-ELP-TRTK treatment reduces S100B uptake in SHSY5Y cells. Furthermore, the Synb1-ELP-TRTK peptide decreased S100B-induced oxidative damage to mutant ataxin-1-expressing neurons. To test the delivery capabilities of ELP-based therapeutic peptides to the cerebellum, we treated mice with fluorescently labeled Synb1-ELP and observed that thermal targeting enhanced peptide delivery to the cerebellum. Here, we have laid the framework for thermal-based therapeutic targeting to regions of the brain, particularly the cerebellum. Overall, our data suggest that thermal targeting of ELP-based therapeutic peptides to the cerebellum is a novel treatment strategy for cerebellar neurodegenerative disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。