Deep learning-based vessel extraction in 3D confocal microscope images of cleared human glioma tissues

基于深度学习的透明化人类胶质瘤组织 3D 共聚焦显微镜图像中的血管提取

阅读:5
作者:Xiaodu Yang, Dian He, Yu Li, Chenyang Li, Xinyue Wang, Xingzheng Zhu, Haitao Sun, Yingying Xu0

Abstract

Comprehensive visualization and accurate extraction of tumor vasculature are essential to study the nature of glioma. Nowadays, tissue clearing technology enables 3D visualization of human glioma vasculature at micron resolution, but current vessel extraction schemes cannot well cope with the extraction of complex tumor vessels with high disruption and irregularity under realistic conditions. Here, we developed a framework, FineVess, based on deep learning to automatically extract glioma vessels in confocal microscope images of cleared human tumor tissues. In the framework, a customized deep learning network, named 3D ResCBAM nnU-Net, was designed to segment the vessels, and a novel pipeline based on preprocessing and post-processing was developed to refine the segmentation results automatically. On the basis of its application to a practical dataset, we showed that the FineVess enabled extraction of variable and incomplete vessels with high accuracy in challenging 3D images, better than other traditional and state-of-the-art schemes. For the extracted vessels, we calculated vascular morphological features including fractal dimension and vascular wall integrity of different tumor grades, and verified the vascular heterogeneity through quantitative analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。