Highly compacted DNA nanoparticles with low MW PEG coatings: in vitro, ex vivo and in vivo evaluation

具有低分子量 PEG 涂层的高度压缩 DNA 纳米粒子:体外、离体和体内评估

阅读:6
作者:Nicholas J Boylan, Jung Soo Suk, Samuel K Lai, Raz Jelinek, Michael P Boyle, Mark J Cooper, Justin Hanes

Abstract

Highly compacted DNA nanoparticles, composed of single molecules of plasmid DNA compacted with block copolymers of poly-l-lysine and 10kDa polyethylene glycol (CK(30)PEG(10k)), mediate effective gene delivery to the brain, eyes and lungs in vivo. Nevertheless, we found that CK(30)PEG(10k) DNA nanoparticles are immobilized by mucoadhesive interactions in sputum that lines the lung airways of patients with cystic fibrosis (CF), which would presumably preclude the efficient delivery of cargo DNA to the underlying epithelium. We previously found that nanoparticles can rapidly penetrate human mucus secretions if they are densely coated with low MW PEG (2-5kDa), whereas nanoparticles with 10kDa PEG coatings were immobilized. We thus sought to reduce mucoadhesion of DNA nanoparticles by producing CK(30)PEG DNA nanoparticles with low MW PEG coatings. We examined the morphology, colloidal stability, nuclease resistance, diffusion in human sputum and in vivo gene transfer of CK(30)PEG DNA nanoparticles prepared using various PEG MWs. CK(30)PEG(10k) and CK(30)PEG(5k) formulations did not aggregate in saline, provided partial protection against DNase I digestion and exhibited the highest gene transfer to lung airways following inhalation in BALB/c mice. However, all DNA nanoparticle formulations were immobilized in freshly expectorated human CF sputum, likely due to inadequate PEG surface coverage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。