Contractile force measurement of human induced pluripotent stem cell-derived cardiac cell sheet-tissue

人类诱导性多能干细胞衍生的心脏细胞片组织收缩力测量

阅读:5
作者:Daisuke Sasaki, Katsuhisa Matsuura, Hiroyoshi Seta, Yuji Haraguchi, Teruo Okano, Tatsuya Shimizu

Abstract

We have developed our original tissue engineering technology "cell sheet engineering" utilizing temperature-responsive culture dishes. The cells are confluently grown on a temperature-responsive culture dish and can be harvested as a cell sheet by lowering temperature without enzymatic digestion. Cell sheets are high-cell-density tissues similar to actual living tissues, maintaining their structure and function. Based on this "cell sheet engineering", we are trying to create functional cardiac tissues from human induced pluripotent stem cells, for regenerative therapy and in vitro drug testing. Toward this purpose, it is necessary to evaluate the contractility of engineered cardiac cell sheets. Therefore, in the present study, we developed a contractile force measurement system and evaluated the contractility of human iPSC-derived cardiac cell sheet-tissues. By attaching the cardiac cell sheets on fibrin gel sheets, we created dynamically beating cardiac cell sheet-tissues. They were mounted to the force measurement system and the contractile force was measured stably and clearly. The absolute values of contractile force were around 1 mN, and the mean force value per cross-sectional area was 3.3 mN/mm2. These values are equivalent to or larger than many previously reported values, indicating the functionality of our engineered cardiac cell sheets. We also confirmed that both the contractile force and beating rate were significantly increased by the administration of adrenaline, which are the physiologically relevant responses for cardiac tissues. In conclusion, the force measurement system developed in the present study is valuable for the evaluation of engineered cardiac cell sheet-tissues, and for in vitro drug testing as well.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。