Theoretical design of a space bioprocessing system to produce recombinant proteins

生产重组蛋白的空间生物处理系统的理论设计

阅读:5
作者:Mathangi Soundararajan, Matthew B Paddock, Michael Dougherty, Harry W Jones, John A Hogan, Frances M Donovan, Jonathan M Galazka, A Mark Settles

Abstract

Space-based biomanufacturing has the potential to improve the sustainability of deep space exploration. To advance biomanufacturing, bioprocessing systems need to be developed for space applications. Here, commercial technologies were assessed to design space bioprocessing systems to supply a liquid amine carbon dioxide scrubber with active carbonic anhydrase produced recombinantly. Design workflows encompassed biomass dewatering of 1 L Escherichia coli cultures through to recombinant protein purification. Non-crew time equivalent system mass (ESM) analyses had limited utility for selecting specific technologies. Instead, bioprocessing system designs focused on minimizing complexity and enabling system versatility. Three designs that differed in biomass dewatering and protein purification approaches had nearly equivalent ESM of 357-522 kg eq. Values from the system complexity metric (SCM), technology readiness level (TRL), integration readiness level (IRL), and degree of crew assistance metric identified a simpler, less costly, and easier to operate design for automated biomass dewatering, cell lysis, and protein affinity purification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。