Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana

拟南芥组蛋白 H3 赖氨酸 4 的单甲基化、二甲基化和三甲基化全基因组分析

阅读:6
作者:Xiaoyu Zhang, Yana V Bernatavichute, Shawn Cokus, Matteo Pellegrini, Steven E Jacobsen

Background

Post-translational modifications of histones play important roles in maintaining normal transcription patterns by directly or indirectly affecting the structural properties of the chromatin. In plants, methylation of histone H3 lysine 4 (H3K4me) is associated with genes and required for normal plant development.

Conclusions

H3K4me plays widespread roles in regulating gene expression in plants. Although many aspects of the mechanisms and functions of H3K4me appear to be conserved among all three kingdoms, we observed significant differences in the relationship between H3K4me and transcription or other epigenetic pathways in plants and mammals.

Results

We have characterized the genome-wide distribution patterns of mono-, di- and trimethylation of H3K4 (H3K4me1, H3K4me2 and H3K4me3, respectively) in Arabidopsis thaliana seedlings using chromatin immunoprecipitation and high-resolution whole-genome tiling microarrays (ChIP-chip). All three types of H3K4me are found to be almost exclusively genic, and two-thirds of Arabidopsis genes contain at least one type of H3K4me. H3K4me2 and H3K4me3 accumulate predominantly in promoters and 5' genic regions, whereas H3K4me1 is distributed within transcribed regions. In addition, H3K4me3-containing genes are highly expressed with low levels of tissue specificity, but H3K4me1 or H3K4me2 may not be directly involved in transcriptional activation. Furthermore, the preferential co-localization of H3K4me3 and H3K27me3 found in mammals does not appear to occur in plants at a genome-wide level, but H3K4me2 and H3K27me3 co-localize at a higher-than-expected frequency. Finally, we found that H3K4me2/3 and DNA methylation appear to be mutually exclusive, but surprisingly, H3K4me1 is highly correlated with CG DNA methylation in the transcribed regions of genes. Conclusions: H3K4me plays widespread roles in regulating gene expression in plants. Although many aspects of the mechanisms and functions of H3K4me appear to be conserved among all three kingdoms, we observed significant differences in the relationship between H3K4me and transcription or other epigenetic pathways in plants and mammals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。