Anti-infectious and anti-inflammatory effects of peptide fragments sequentially derived from the antimicrobial peptide centrocin 1 isolated from the green sea urchin, Strongylocentrotus droebachiensis

从绿海胆 Strongylocentrotus droebachiensis 中分离的抗菌肽 centrocin 1 依次衍生的肽片段的抗感染和抗炎作用

阅读:6
作者:Camilla Björn, Joakim Håkansson, Emma Myhrman, Veronika Sjöstrand, Tor Haug, Kerstin Lindgren, Hans-Matti Blencke, Klara Stensvåg, Margit Mahlapuu

Abstract

Bacterial resistance against antibiotic treatment has become a major threat to public health. Antimicrobial peptides (AMPs) have emerged as promising alternative agents for treatment of infectious diseases. This study characterizes novel synthetic peptides sequentially derived from the AMP centrocin 1, isolated from the green sea urchin, for their applicability as anti-infective agents.The microbicidal effect of centrocin 1 heavy chain (CEN1 HC-Br), its debrominated analogue (CEN1 HC), the C-terminal truncated variants of both peptides, i.e. CEN1 HC-Br (1-20) and CEN1 HC (1-20), as well as the cysteine to serine substituted equivalent CEN1 HC (Ser) was evaluated using minimal microbicidal concentration assay. The anti-inflammatory properties were assessed by measuring the inhibition of secretion of pro-inflammatory cytokines. All the peptides tested exhibited marked microbicidal and anti-inflammatory properties. No difference in efficacy was seen comparing CEN1 HC-Br and CEN1 HC, while the brominated variant had higher cytotoxicity. C-terminal truncation of both peptides reduced salt-tolerability of the microbicidal effect as well as anti-inflammatory actions. Also, serine substitution of cysteine residue decreased the microbicidal effect. Thus, from the peptide variants tested, CEN1 HC showed the best efficacy and safety profile. Further, CEN1 HC significantly reduced bacterial counts in two different animal models of infected wounds, while Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) failed to develop resistance against this peptide under continued selection pressure. In summary, CEN1 HC appears a promising new antimicrobial agent, and clinical studies are warranted to evaluate the applicability of this AMP for local treatment of infections in man.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。