Mangiferin Inhibits Apoptosis and Autophagy Induced by Staphylococcus aureus in RAW264.7 Cells

芒果苷抑制金黄色葡萄球菌诱导的RAW264.7细胞凋亡和自噬

阅读:9
作者:Jun Xu #, Hua Yao #, Shichen Wang #, Huanrong Li, Xiaolin Hou

Conclusion

Our results demonstrated that MG might protect RAW264.7 cells from S. aureus-induced apoptosis and autophagy via inhibiting JNK/Bax-dependent signal pathway. Therefore, MG may be a potential agent against pathological cell damage induced by S. aureus infection.

Methods

The RAW264.7 cells were pretreated with MG, or pretreated with SP600125 or anisomycin synchronously, and then infected with S. aureus (MOI=100:1). The viability and proliferation status of RAW264.7 cells were detected by MTT and EdU assay. The relative expression of TNF-α, IL-6 and IL-10 protein was tested with ELISA. The levels of Bax, Bcl-2, caspase-3, c-Jun N-terminal kinase (JNK), extracellular-regulated protein kinase (ERK), p38, LC3, Beclin-1, p62, phosphorylated JNK, phosphorylated p38 and phosphorylated ERK in cells were detected by Western blotting. The apoptosis rate of RAW264.7 cells was analyzed by flow cytometric assay.

Purpose

Staphylococcus aureus (S. aureus) is an important bacterial pathogen, which creates infective inflammation to human being and animals. Mangiferin (MG) is one of the natural flavonoids with anti-inflammatory, anti-bacterial, and anti-oxidative properties. However, the anti-apoptosis and anti-autophagy of MG are unknown. Hence, this study was aimed to research the inhibition of MG on S. aureus-induced apoptosis and autophagy in RAW264.7 cells.

Results

The study showed that MG significantly attenuated RAW264.7 cells apoptosis and autophagy caused by S. aureus. MG alleviated S. aureus-induced apoptosis by down-regulating the protein level of active caspase-3 and Bax and up-regulating the level of Bcl-2. MG also inhibited S. aureus-induced autophagy via decreasing the protein level of LC3-II/LC3-I and Beclin-1 or increasing the protein expression of p62. This protective role was dependent on the up-regulation of JNK signal pathway, which was confirmed by using JNK agonist and inhibitor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。