Identification of transthyretin as a novel interacting partner for the δ subunit of GABAA receptors

鉴定甲状腺素运载蛋白为 GABAA 受体 δ 亚基的新型相互作用伙伴

阅读:7
作者:Li Zhou, Xin Tang, Xinyi Li, Yuting Bai, Joel N Buxbaum, Gong Chen

Abstract

GABAA receptors (GABAA-Rs) play critical roles in brain development and synchronization of neural network activity. While synaptic GABAA-Rs can exert rapid inhibition, the extrasynaptic GABAA-Rs can tonically inhibit neuronal activity due to constant activation by ambient GABA. The δ subunit-containing GABAA-Rs are expressed abundantly in the cerebellum, hippocampus and thalamus to mediate the major tonic inhibition in the brain. While electrophysiological and pharmacological properties of the δ-GABAA-Rs have been well characterized, the molecular interacting partners of the δ-GABAA-Rs are not clearly defined. Here, using a yeast two-hybrid screening assay, we identified transthyretin (TTR) as a novel regulatory molecule for the δ-GABAA-Rs. Knockdown of TTR in cultured cerebellar granule neurons significantly decreased the δ receptor expression; whereas overexpressing TTR in cortical neurons increased the δ receptor expression. Electrophysiological analysis confirmed that knockdown or overexpression of TTR in cultured neurons resulted in a corresponding decrease or increase of tonic currents. Furthermore, in vivo analysis of TTR-/- mice revealed a significant decrease of the surface expression of the δ-GABAA-Rs in cerebellar granule neurons. Together, our studies identified TTR as a novel regulator of the δ-GABAA-Rs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。