Glucotoxicity induces abnormal glucagon secretion through impaired insulin signaling in InR1G cells

糖毒性通过 InR1G 细胞中受损的胰岛素信号传导诱导胰高血糖素分泌异常

阅读:5
作者:Takashi Katsura, Dan Kawamori, Eri Aida, Taka-Aki Matsuoka, Iichiro Shimomura

Abstract

The significance of glucagon in the pathophysiology of diabetes mellitus is widely recognized, but the mechanisms underlying dysregulated glucagon secretion are still unclear. Here, we explored the molecular mechanisms of glucagon dysregulation, using an in vitro model. Hamster-derived glucagon-secreting InR1G cells were exposed to high glucose (25 mM) levels for 12 h before analyzing glucagon secretion and the activity of components involved in insulin signaling. High-glucose treatment induced increased glucagon secretion in InR1G cells, which represents a hallmark of diabetes mellitus. This treatment reduced the phosphorylation of Akt, indicating the deterioration of insulin signaling. Simultaneously, oxidative stress and JNK activity were shown to be increased. The inhibition of JNK signaling resulted in the amelioration of high-glucose level-induced glucagon secretion. Abnormally elevated glucagon secretion in diabetes can be reproduced by high-glucose treatment of InR1G cells, and the involvement of high glucose-oxidative stress-JNK-insulin signaling pathway axis has been demonstrated. These data elucidate, at least partly, the previously unclear mechanism of abnormal glucagon secretion, providing insights into a potential novel approach to diabetes treatment, targeting glucagon.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。