New roles of glycosaminoglycans in α-synuclein aggregation in a cellular model of Parkinson disease

糖胺聚糖在帕金森病细胞模型中 α-突触核蛋白聚集中的新作用

阅读:7
作者:Sonia Lehri-Boufala, Mohand-Ouidir Ouidja, Véronique Barbier-Chassefière, Emilie Hénault, Rita Raisman-Vozari, Laure Garrigue-Antar, Dulce Papy-Garcia, Christophe Morin

Abstract

The causes of Parkinson disease (PD) remain mysterious, although some evidence supports mitochondrial dysfunctions and α-synuclein accumulation in Lewy bodies as major events. The abnormal accumulation of α-synuclein has been associated with a deficiency in the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Cathepsin D (cathD), the major lysosomal protease responsible of α-synuclein degradation was described to be up-regulated in PD model. As glycosaminoglycans (GAGs) regulate cathD activity, and have been recently suggested to participate in PD physiopathology, we investigated their role in α-synuclein accumulation by their intracellular regulation of cathD activity. In a classical neuroblastoma cell model of PD induced by MPP+, the genetic expression of GAGs-biosynthetic enzymes was modified, leading to an increase of GAGs amounts whereas intracellular level of α-synuclein increased. The absence of sulfated GAGs increased intracellular cathD activity and limited α-synuclein accumulation. GAGs effects on cathD further suggested that specific sequences or sulfation patterns could be responsible for this regulation. The present study identifies, for the first time, GAGs as new regulators of the lysosome degradation pathway, regulating cathD activity and affecting two main biological processes, α-synuclein aggregation and apoptosis. Finally, this opens new insights into intracellular GAGs functions and new fields of investigation for glycobiological approaches in PD and neurobiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。