Seed nano-priming with Zinc Oxide nanoparticles in rice mitigates drought and enhances agronomic profile

使用氧化锌纳米粒子对水稻种子进行纳米引发可缓解干旱并改善农艺特性

阅读:4
作者:Muhammad Waqas Mazhar, Muhammad Ishtiaq, Iqbal Hussain, Abida Parveen, Khizar Hayat Bhatti, Muhammad Azeem, Sumaira Thind, Muhammad Ajaib, Mehwish Maqbool, Tauqeer Sardar, Khursheed Muzammil, Nazim Nasir

Abstract

All cereal crops, particularly rice are perpetually affected due to drastic climatic changes which triggers different stressors resulting in food shortage scenarios across the globe. In modern era, application of nanotechnology holds the pledge in combating the climate change mediated environmental stressors through nanomaterials such as pesticides, nano-biosensors, nano-clays and nano-seed priming technologies. Current study is a part of experiment conducted to comprehend the behaviour of rice plants raised from Zinc Oxide nanoparticles (ZnONPs) primed seeds under the water shortage environment. The seed priming treatment concentrations included 0, 5, 10, 15, 25 and 50 ppm. In the experimental results an increase in plant height, total chlorophyll contents, plant fresh and dry weights was obtained by use of seed priming with ZnONPs. The study results proved that seed priming with 25ppm of ZnONPs increased seed and straw yield with value of 85.333 and 123.333, respectively under water deficit environment. The analysis depicted that 25 ppm has been found more suitable for increasing the 1000 paddy weight of rice plants under both well irrigated and water shortage conditions. Seed priming with ZnONPs results in 53% reduction in MDA contents of water stressed rice plants Drought stress leads to reduction in plant height by 31%, plant fresh weight by 22% and plant dry weight by 28%. Seed priming treatments imparted in current study show significance increase in plant biomass. Priming with ZnONPs further enhances the levels of proline amino acid facilitating the plant to combat water shortage stress. A further elevation in activities of SOD, CAT and POD takes place in rice plants raised from ZnONPs primed seeds by 11%, 13% and 38%, respectively. An elevation in activities of antioxidant enzymes was found and the levels of oxidative stress indicators decreased upon seed priming with ZnONPs. Furthermore the yield characteristics such as panicle length, number of tillers, paddy yield and straw yield of the rice plants raised through ZnONPs primed seeds enhanced. The ZnONPs at concentration of 25 ppm proved optimum in alleviating drought induced damages. It can be inferred that seed pre conditioning with ZnONPs is helpful in increasing yield attributes under the water shortage environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。