Silver-doped graphene oxide nanocomposite triggers cytotoxicity and apoptosis in human hepatic normal and carcinoma cells

银掺杂的氧化石墨烯纳米复合材料引发人类肝脏正常细胞和癌细胞的细胞毒性和细胞凋亡

阅读:3
作者:Daoud Ali, Saud Alarifi, Saad Alkahtani, Rafa S Almeer

Conclusion

This result provides a basic comparative toxic effect of rGO-Ag nanocomposite on hepatic normal and cancerous liver cells.

Methods

This study aimed at determining the toxic potential of rGO-Ag nanocomposite on human liver normal (CHANG) and cancer (HepG2) cells. The rGO-Ag nanocomposite was characterized by using different advanced instruments, namely, dynamic light scattering, scanning electron microscope, and transmission electron microscope.

Results

The rGO-Ag nanocomposite reduced cell viability and impaired cell membrane integrity of CHANG and HepG2 cells in a dose-dependent manner. Additionally, it induced reactive oxygen species generation and reduced mitochondrial membrane potential in both cells in a dose-dependent manner. Moreover, the activity of oxidative enzymes such as lipid peroxide, superoxide dismutase, and catalase were increased and glutathione was reduced in both cells exposed to rGO-Ag nanocomposite. Pretreatment with N-acetylcysteine inhibited cytotoxicity and reactive oxygen species generation in CHANG and HepG2 cells exposed to rGO-Ag nanocomposite (50 µg/mL). DNA damage was determined by Comet assay and maximum DNA damage occurred at rGO-Ag nanocomposite (25 µg/mL) for 24 h. It is also valuable to inform that HepG2 cells appear to be slightly more susceptible to rGO-Ag nanocomposite exposure than CHANG cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。