Mll4 in Skeletal Muscle Fiber Maintains Muscle Stem Cells by Regulating Notch Ligands

骨骼肌纤维中的 Mll4 通过调节 Notch 配体维持肌肉干细胞

阅读:3
作者:Yea-Eun Kim, Sang-Hyeon Hann, Young-Woo Jo, Kyusang Yoo, Ji-Hoon Kim, Jae W Lee, Young-Yun Kong

Background

Muscle stem cells (MuSCs) undergo numerous state transitions throughout life, which are critical for supporting normal muscle growth and regeneration. Therefore, it is crucial to investigate the regulatory mechanisms governing the transition of MuSC states across different postnatal developmental stages.

Conclusions

Our study suggests that Mll4 is crucial for maintaining MuSCs in both pubertal and adult muscles, which may be accomplished through the modulation of distinct Notch ligand expressions in myofibers. These findings offer new insights into the role of myofiber-expressed Mll4 as a master regulator of MuSCs, highlighting its significance not only in developmental myogenesis but also in adult muscle, irrespective of sex.

Methods

To assess if myofiber-expressed Mll4 contributes to the maintenance of MuSCs, we crossed MCK Cre/+ or HSA MerCreMer/+ mice to Mll4 f/f mice to generate myofiber-specific Mll4-deleted mice. Investigations were conducted using 8-week-old and 4-week-old MCK Cre/+ ;Mll4 f/f mice Investigations were conducted using 8-week-old and 4-week-old HSA Cre/+ ;Mll4 f/f mice were utilized.

Results

During postnatal myogenesis, Mll4 deleted muscles were observed with increased number of cycling MuSCs that proceeded to a differentiation state, leading to MuSC deprivation. This phenomenon occurred independently of gender. When Mll4 was ablated in adult muscles using the inducible method, adult MuSCs lost their quiescence and differentiated into myoblasts, also causing the depletion of MuSCs. Such roles of Mll4 in myofibers coincided with decreased expression levels of distinct Notch ligands: Jag1 and Dll1 in pubertal and Jag2 and Dll4 in adult muscles. Conclusions: Our study suggests that Mll4 is crucial for maintaining MuSCs in both pubertal and adult muscles, which may be accomplished through the modulation of distinct Notch ligand expressions in myofibers. These findings offer new insights into the role of myofiber-expressed Mll4 as a master regulator of MuSCs, highlighting its significance not only in developmental myogenesis but also in adult muscle, irrespective of sex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。