Functional Identification of Malus halliana MhbZIP23 Gene Demonstrates That It Enhances Saline-Alkali Stress Tolerance in Arabidopsis thaliana

垂丝海棠MhbZIP23基因的功能鉴定表明其能增强拟南芥对盐碱胁迫的耐受性

阅读:5
作者:Wenqing Liu, Peng Li, Xiu Wang, Zhongxing Zhang, Yanxiu Wang

Abstract

Saline-alkali stress is a significant abiotic stress that restricts plant growth globally. Basic region leucine zipper (bZIP) transcription factor proteins are widely involved in plants in response to abiotic stress such as saline-alkali stress. Based on transcriptome and quantitative real-time PCR (qRT-PCR), we found that the MhbZIP23 gene could respond to saline-alkali stress. Despite this discovery, the underlying mechanism by which the MhbZIP23 transcription factor responds to saline-alkaline stress remains unexplored. To address this gap in knowledge, we successfully cloned the MhbZIP23 (MD05G1121500) gene from Malus halliana for heterologous expression in Arabidopsis thaliana, facilitating the investigation of its functional role in stress response. Compared to the wild type (WT), Arabidopsis plants demonstrated enhanced growth and a lower degree of wilting when subjected to saline-alkali stress. Furthermore, several physiological indices of the plants altered under such stress conditions. The transgenic Arabidopsis plants (OE-5, 6, and 8), which grew normally, exhibited a higher chlorophyll content and had greater root length in comparison to the control check (CK). MhbZIP23 effectively regulated the levels of the osmoregulatory substance proline (Pro), enhanced the activities of antioxidant enzymes such as peroxidase (POD) and superoxide dismutase (SOD), and reduced the levels of malondialdehyde (MDA) and relative conductivity (REC). These actions improved the ability of plant cells in transgenic Arabidopsis to counteract ROS, as evidenced by the decreased accumulation of O2- and hydrogen peroxide (H2O2). In summary, the MhbZIP23 gene demonstrated effectiveness in alleviating saline-alkali stress in M. halliana, presenting itself as an outstanding resistance gene for apples to combat saline-alkali stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。