Protective effects of ectoine on articular chondrocytes and cartilage in rats for treating osteoarthritis

四氢嘧啶对大鼠骨关节炎关节软骨细胞及软骨的保护作用

阅读:7
作者:Peng Li, Yong Huang, Lishuai Miao, Zhiqi Zhu, Zhanjun Shi

Abstract

Osteoarthritis (OA) is a chronic degenerative disease that primarily includes articular cartilage destruction and inflammatory reactions, and effective treatments for this disease are still lacking. The present study aimed to explore the protective effects of ectoine, a compatible solute found in nature, on chondrocytes in rats and its possible application in OA treatment. In the in vitro studies, the morphology of the chondrocytes after trypsin digestion for 2 min and the viability of the chondrocytes at 50°C were observed after ectoine treatment. The reactive oxygen species (ROS) levels in chondrocytes pretreated with ectoine and post-stimulated with H2O2 were detected using an ROS assay. Chondrocytes were pretreated with ectoine before IL-1β stimulation. RT‒qPCR was used to measure the mRNA levels of cyclooxygenase-2 (COX-2), metallomatrix proteinase-3, -9 (MMP-3, -9), and collagen type II alpha 1 (Col2A1). In addition, immunofluorescence was used to assess the expression of type II collagen. The in vivo effect of ectoine was evaluated in a rat OA model induced by the modified Hulth method. The findings revealed that ectoine significantly increased the trypsin tolerance of chondrocytes, maintained the viability of the chondrocytes at 50°C, and improved their resistance to oxidation. Compared with IL-1β treatment alone, ectoine pretreatment significantly reduced COX-2, MMP-3, and MMP-9 expression and maintained type II collagen synthesis in chondrocytes. In vivo, the cartilage of ectoine-treated rats exhibited less degeneration and lower Osteoarthritis Research Society International (OARSI) scores. The results of this study suggest that ectoine exerts protective effects on chondrocytes and cartilage and can, therefore, be used as a potential therapeutic agent in the treatment of OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。