Inhibition of nitric oxide synthase unmasks vigorous vasoconstriction in established pulmonary arterial hypertension

抑制一氧化氮合酶可揭示已确诊的肺动脉高压中的剧烈血管收缩

阅读:7
作者:Mariko Tanaka, Kohtaro Abe, Masahiko Oka, Keita Saku, Keimei Yoshida, Tomohito Ishikawa, Ivan F McMurtry, Kenji Sunagawa, Sumio Hoka, Hiroyuki Tsutsui

Abstract

It is widely accepted that impaired bioavailability of endothelial nitric oxide (NO) plays a critical role in the pathophysiology of pulmonary arterial hypertension (PAH). However, there are published data that show that relatively many PAH patients respond favorably to acetylcholine-induced pulmonary vasodilation during their follow-up period, when diverse stages of the disorder are included. We hypothesized that NO bioavailability varies depending on the progression of PAH Adult rats were exposed to the VEGF receptor blocker Sugen5416 and 3 weeks of hypoxia followed by return to normoxia for various additional weeks. All rats developed increased right ventricular systolic pressure (RVSP) and occlusive lesion formation at 1, 3, 5, and 8 weeks after the Sugen5416 injection. Acute NO synthase blockade did not change the elevated RVSP at the 1-week time point, while it further increased RVSP markedly at the 3-, 5-, and 8-week time points, leading to death in all rats tested at 8 weeks. Acetylcholine caused significant reduction in RVSP at the 8-week but not the 1-week time point, whereas sodium nitroprusside decreased the pressure similarly at both time points. Increased NO-mediated cGMP production was found in lungs from the 8-week but not the 1-week time point. In conclusion, despite its initial impairment, NO bioavailability is restored and endogenous NO plays a critical protective role by counteracting severe pulmonary vasoconstriction in established stages of PAH in the Sugen5416/hypoxia/normoxia-exposed rats. Our results provide solid pharmacological evidence for a major contribution of a NO-suppressed vasoconstrictor component in the pathophysiology of established PAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。