Meta-Analysis of Microarray Data of Rainbow Trout Fry Gonad Differentiation Modulated by Ethynylestradiol

炔雌醇调控虹鳟鱼苗生殖腺分化的微阵列数据荟萃分析

阅读:10
作者:Sophie Depiereux, Florence Le Gac, Bertrand De Meulder, Michael Pierre, Raphaël Helaers, Yann Guiguen, Patrick Kestemont, Eric Depiereux

Abstract

Sex differentiation in fish is a highly labile process easily reversed by the use of exogenous hormonal treatment and has led to environmental concerns since low doses of estrogenic molecules can adversely impact fish reproduction. The goal of this study was to identify pathways altered by treatment with ethynylestradiol (EE2) in developing fish and to find new target genes to be tested further for their possible role in male-to-female sex transdifferentiation. To this end, we have successfully adapted a previously developed bioinformatics workflow to a meta-analysis of two datasets studying sex reversal following exposure to EE2 in juvenile rainbow trout. The meta-analysis consisted of retrieving the intersection of the top gene lists generated for both datasets, performed at different levels of stringency. The intersecting gene lists, enriched in true positive differentially expressed genes (DEGs), were subjected to over-representation analysis (ORA) which allowed identifying several statistically significant enriched pathways altered by EE2 treatment and several new candidate pathways, such as progesterone-mediated oocyte maturation and PPAR signalling. Moreover, several relevant key genes potentially implicated in the early transdifferentiation process were selected. Altogether, the results show that EE2 has a great effect on gene expression in juvenile rainbow trout. The feminization process seems to result from the altered transcription of genes implicated in normal female gonad differentiation, resulting in expression similar to that observed in normal females (i.e. the repression of key testicular markers cyp17a1, cyp11b, tbx1), as well as from other genes (including transcription factors) that respond specifically to the EE2 treatment. The results also showed that the bioinformatics workflow can be applied to different types of microarray platforms and could be generalized to (eco)toxicogenomics studies for environmental risk assessment purposes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。