Enhanced hepatic apoA-I secretion and peripheral efflux of cholesterol and phospholipid in CD36 null mice

CD36 基因敲除小鼠肝脏 apoA-I 分泌增强,胆固醇和磷脂外周流出增加

阅读:7
作者:Pin Yue, Zhouji Chen, Fatiha Nassir, Carlos Bernal-Mizrachi, Brian Finck, Salman Azhar, Nada A Abumrad

Abstract

CD36 facilitates oxidized low density lipoprotein uptake and is implicated in development of atherosclerotic lesions. CD36 also binds unmodified high and very low density lipoproteins (HDL, VLDL) but its role in the metabolism of these particles is unclear. Several polymorphisms in the CD36 gene were recently shown to associate with serum HDL cholesterol. To gain insight into potential mechanisms for these associations we examined HDL metabolism in CD36 null (CD36(-/-)) mice. Feeding CD36(-/-) mice a high cholesterol diet significantly increased serum HDL, cholesterol and phospholipids, as compared to wild type mice. HDL apolipoproteins apoA-I and apoA-IV were increased and shifted to higher density HDL fractions suggesting altered particle maturation. Clearance of dual-labeled HDL was unchanged in CD36(-/-) mice and cholesterol uptake from HDL or LDL by isolated CD36(-/-) hepatocytes was unaltered. However, CD36(-/-) hepatocytes had higher cholesterol and phospholipid efflux rates. In addition, expression and secretion of apoA-I and apoA-IV were increased reflecting enhanced PXR. Similar to hepatocytes, cholesterol and phospholipid efflux were enhanced in CD36(-/-) macrophages without changes in protein levels of ABCA1, ABCG1 or SR-B1. However, biotinylation assays showed increased surface ABCA1 localization in CD36(-/-) cells. In conclusion, CD36 influences reverse cholesterol transport and hepatic ApoA-I production. Both pathways are enhanced in CD36 deficiency, increasing HDL concentrations, which suggests the potential benefit of CD36 inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。