Src-mediated tyrosine phosphorylation of PRC1 and kinastrin/SKAP on the mitotic spindle

有丝分裂纺锤体上 PRC1 和激酶/SKAP 的 Src 介导酪氨酸磷酸化

阅读:14
作者:Mariko Morii, Sho Kubota, Chizu Hasegawa, Yumi Takeda, Shiori Kometani, Kyoko Enomoto, Takayuki Suzuki, Sayuri Yanase, Rika Sato, Aki Akatsu, Kensuke Hirata, Takuya Honda, Takahisa Kuga, Takeshi Tomonaga, Yuji Nakayama, Noritaka Yamaguchi, Naoto Yamaguchi

Abstract

Src-family tyrosine kinases (SFKs) play important roles in a number of signal transduction events during mitosis, such as spindle formation. A relationship has been reported between SFKs and the mitotic spindle; however, the underlying mechanisms remain unclear. We herein demonstrated that SFKs accumulated in the centrosome region at the onset of mitosis. Centrosomal Fyn increased in the G2 phase in a microtubule polymerization-dependent manner. A mass spectrometry analysis using mitotic spindle preparations was performed to identify tyrosine-phosphorylated substrates. Protein regulator of cytokinesis 1 (PRC1) and kinastrin/small kinetochore-associated protein (kinastrin/SKAP) were identified as SFK substrates. SFKs mainly phosphorylated PRC1 at Tyr-464 and kinastrin at Tyr-87. Although wild-type PRC1 is associated with microtubules, phosphomimetic PRC1 impaired the ability to bind microtubules. Phosphomimetic kinastrin at Tyr-87 also impaired binding with microtubules. Collectively, these results suggest that tyrosine phosphorylation of PRC1 and kinastrin plays a role in their delocalization from microtubules during mitosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。