A Conceptual Approach for Examining Effects of the Adolescent Bone Marrow Milieu on MSC Phenotype

研究青少年骨髓环境对 MSC 表型影响的概念方法

阅读:7
作者:Sanjana Kannikeswaran, Daniel G Whitney, Maureen J Devlin, Ying Li, Michelle S Caird, Andrea I Alford

Abstract

Children with bone fragility often exhibit elevated bone marrow lipid levels, which may affect mesenchymal stem cell (MSC) differentiation potential and ultimately bone strength via cell-autonomous and/or non-cell-autonomous factors. Here, we use standard co-culture techniques to study biological effects of bone marrow cell-derived secretome on MSC. Bone marrow was collected during routine orthopedic surgery, and the entire marrow cell preparation, with or without red blood cell (RBC) reduction, was plated at three different densities. Conditioned medium (secretome) was collected after 1, 3, and 7 days. ST2 cells, a murine MSC line, were then cultured in the secretomes. Exposure to the secretomes was associated with reductions of up to 62% in MSC MTT outcomes that depended on the duration of secretome development, as well as marrow cell plating density. Reduced MTT values were not associated with diminished cell number and viability assessed using Trypan Blue exclusion. Expression of pyruvate dehydrogenase kinase 4 was modestly elevated, and β-actin levels were transiently reduced in ST2 cells exposed to secretome formulations that had elicited maximal reductions in MTT outcomes. The findings from this study can inform the design of future experimental studies to examine contributions of cell-autonomous and non-cell-autonomous factors in the bone marrow to MSC differentiation potential, bone formation, and skeletal growth. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。