Chronic hypoxia inhibits MMP-2 activation and cellular invasion in human cardiac myofibroblasts

慢性缺氧抑制人心脏肌成纤维细胞中的 MMP-2 活化和细胞侵袭

阅读:6
作者:Kirsten Riches, Michael E Morley, Neil A Turner, David J O'Regan, Stephen G Ball, Chris Peers, Karen E Porter

Abstract

Cardiac myofibroblasts are pivotal to adaptive remodelling after myocardial infarction (MI). These normally quiescent cells invade and proliferate as a wound healing response, facilitated by activation of matrix metalloproteinases, particularly MMP-2. Following MI these reparative events occur under chronically hypoxic conditions yet the mechanisms by which hypoxia might modulate MMP-2 activation and cardiac myofibroblast invasion have not been investigated. Human cardiac myofibroblasts cultured in collagen-supplemented medium were exposed to normoxia (20% O(2)) or hypoxia (1% O(2)) for up to 48 h. Secreted levels of total and active MMP-2 were quantified using gelatin zymography, TIMP-2 and membrane-associated MT1-MMP were quantified with ELISA, whole cell MT1-MMP by immunoblotting and immunocytochemistry and MT1-MMP mRNA with real-time RT-PCR. Cellular invasion was assessed in modified Boyden chambers and migration by scratch wound assay. In the human cardiac myofibroblast, MT1-MMP was central to MMP-2 activation and activated MMP-2 necessary for invasion, confirmed by gene silencing. MMP-2 activation was substantially attenuated by hypoxia (P<0.001), paralleled by inhibition of myofibroblast invasion (P<0.05). In contrast, migration was independent of either MT1-MMP or MMP-2. Reduced membrane expression of MT1-MMP (P<0.05) was responsible for the hypoxic reduction of MMP-2 activation, with no change in either total MMP-2 or TIMP-2. In conclusion, hypoxia reduces MMP-2 activation and subsequent invasion of human cardiac myofibroblasts by reducing membrane expression of MT1-MMP and may delay healing after MI. Regulation of these MMPs remains an attractive target for therapeutic intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。