Pancreatic cancer cell-intrinsic transglutaminase-2 promotes T cell suppression through microtubule-dependent secretion of immunosuppressive cytokines

胰腺癌细胞内在的转谷氨酰胺酶-2通过微管依赖性免疫抑制细胞因子分泌促进 T 细胞抑制

阅读:8
作者:Anton Lahusen, Nora Minhöfer, Kim-André Lohse, Christine Blechner, Jessica Lindenmayer, Tim Eiseler, Anton Wellstein, Alexander Kleger, Thomas Seufferlein, Sabine Windhorst, Yuan-Na Lin

Background

Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.

Conclusions

These findings indicate that targeting microtubular function therapeutically may enhance antitumor T cell responses by impacting activity of immunosuppressive cytokines in the PDAC microenvironment.

Methods

We used an unbiased screening approach of T cell resistant and sensitive murine KPC (KrasLSL-G12D/+; Trp53fl/fl; Ptf1aCre/+ ) PDAC cells in a three-dimensional co-culture platform with syngeneic antigen-educated T cells to identify potential cell-intrinsic drivers of T cell suppression in PDAC. Comparative transcriptomic analysis was performed to reveal promising candidates that mediate resistance to T cells. We investigated their contribution by shRNA-mediated knockdown and pharmacological inhibition in murine in vitro and in vivo studies, as well as in patient-derived organoids (PDOs). A combination of transcriptomic analyses, cytometric and immunohistochemistry techniques allowed us to validate the underlying T cell response phenotypes of PDAC cells. The action of TGM2 via interaction with tubulin and the impact of microtubule dynamics and vesicle trafficking were evaluated by protein analyses and live-cell imaging. Correlation analyses via TCGA data complemented the functional studies.

Results

We identified transglutaminase 2 (TGM2) as a mediator of T cell suppression in PDAC. We report that high levels of TGM2 expression in patients' tumors correlate with immunosuppressive signatures and poor overall survival. We found that TGM2 regulates vesicle trafficking by modulating microtubule network density and dynamics in pancreatic cancer cells, thus facilitating the secretion of immunosuppressive cytokines, which impair effector T cell functionality. In TGM2-expressing PDOs, pharmacological TGM2 inhibition or treatment with nocodazole increased T cell-mediated apoptosis. Also, pretreatment of TGM2high PDOs with sublethal doses of the spindle poisons paclitaxel or vincristine increased CD8+T cell activation and sensitized PDOs toward T cell-mediated cytotoxicity. Conclusions: These findings indicate that targeting microtubular function therapeutically may enhance antitumor T cell responses by impacting activity of immunosuppressive cytokines in the PDAC microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。