Optical coherence tomography velocimetry based on decorrelation estimation of phasor pair ratios (DEPPAIR)

基于相量对比去相关估计的光学相干断层扫描测速法 (DEPPAIR)

阅读:7
作者:Maximilian G O Gräfe, Oleg Nadiarnykh, Johannes F De Boer

Abstract

Quantitative velocity estimations in optical coherence tomography requires the estimation of the axial and lateral flow components. Optical coherence tomography measures the depth resolved complex field reflected from a sample. While the axial velocity component can be determined from the Doppler shift or phase shift between a pair of consecutive measurements at the same location, the estimation of the lateral component for in vivo applications is still challenging. One approach to determine lateral velocity is multiple simultaneous measurements at different angles. In another approach the lateral component can be retrieved through repeated measurements at (nearly) the same location by an analysis of the decorrelation over time. In this paper we follow the latter approach. We describe a model for the complex field changes between consecutive measurements and use it to predict the uncertainties for amplitude-based, phase-based and complex algorithms. The uncertainty of the flow estimations follows from a statistical analysis and is determined by the number of available measurements and the applied analysis method. The model is verified in phantom measurements and the dynamic range of velocity estimations is investigated. We demonstrate that phase-based and complex (phasor) based lateral flow estimation methods are superior to amplitude-based algorithms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。