Gene identification and RNAi-silencing of p62/SQSTM1 in the vector Rhodnius prolixus reveals a high degree of sequence conservation but no apparent deficiency-related phenotypes in vitellogenic females

载体 Rhodnius prolixus 中的 p62/SQSTM1 基因鉴定和 RNAi 沉默表明,序列保守性较高,但在卵黄发生雌性中没有明显的缺陷相关表型

阅读:3
作者:Jéssica Pereira, Samara Santos-Araujo, Larissa Bomfim, Katia Calp Gondim, David Majerowicz, Attilio Pane, Isabela Ramos

Abstract

Autophagy and the ubiquitin-proteasome system (UPS) are important cellular mechanisms that coordinate protein degradation essential for proteostasis. P62/SQSTM1 is a receptor cargo protein able to deliver ubiquitinated targets to the proteasome proteolytic complex and/or to the autophagosome. In the insect vector of Chagas disease, Rhodnius prolixus, previous works have shown that the knockdown of different autophagy-related genes (ATGs) and ubiquitin-conjugating enzymes resulted in abnormal oogenesis phenotypes and embryo lethality. Here, we investigate the role of the autophagy/UPS adaptor protein p62 during the oogenesis and reproduction of this vector. We found that R. prolixus presents one isoform of p62 encoded by a non-annotated gene. The predicted protein presents the domain architecture anticipated for p62: PB1 (N-term), ZZ-finger, and UBA (C-term) domains, and phylogenetic analysis showed that this pattern is highly conserved within insects. Using parental RNAi, we found that although p62 is expressed in the ovary, midgut, and fat body of adult females, systemic silencing of this gene did not result in any apparent phenotypes under in-house conditions. The insects' overall levels of blood meal digestion, lifespan, yolk protein production, oviposition, and embryo viability were not altered when compared to controls. Because it is known that autophagy and UPS can undergo compensatory mechanisms, we asked whether the silencing of p62 was triggering adaptative changes in the expression of genes of the autophagy, UPS, and the unfolded protein response (UPR) and found that only ATG1 was slightly up regulated in the ovaries of silenced females. In addition, experiments to further investigate the role of p62 in insects previously silenced for the E1-conjugating enzyme (a condition known to trigger the upregulation of p62), also did not result in any apparent phenotypes in vitellogenic females.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。