Electrophysiological characterization of the modified hERGT potassium channel used to obtain the first cryo-EM hERG structure

用于获得第一个低温电子显微镜 hERG 结构的改良 hERGT 钾通道的电生理学表征

阅读:9
作者:Yihong Zhang, Christopher E Dempsey, Jules C Hancox

Abstract

The voltage-gated hERG (human-Ether-à-go-go Related Gene) K+ channel plays a fundamental role in cardiac action potential repolarization. Loss-of-function mutations or pharmacological inhibition of hERG leads to long QT syndrome, whilst gain-of-function mutations lead to short QT syndrome. A recent open channel cryo-EM structure of hERG represents a significant advance in the ability to interrogate hERG channel structure-function. In order to suppress protein aggregation, a truncated channel construct of hERG (hERGT ) was used to obtain this structure. In hERGT cytoplasmic domain residues 141 to 350 and 871 to 1,005 were removed from the full-length channel protein. There are limited data on the electrophysiological properties of hERGT channels. Therefore, this study was undertaken to determine how hERGT influences channel function at physiological temperature. Whole-cell measurements of hERG current (IhERG ) were made at 37°C from HEK 293 cells expressing wild-type (WT) or hERGT channels. With a standard +20 mV activating command protocol, neither end-pulse nor tail IhERG density significantly differed between WT and hERGT . However, the IhERG deactivation rate was significantly slower for hERGT . Half-maximal activation voltage (V0.5 ) was positively shifted for hERGT by ~+8 mV (p < .05 versus WT), without significant change to the activation relation slope factor. Neither the voltage dependence of inactivation, nor time course of development of inactivation significantly differed between WT and hERGT , but recovery of IhERG from inactivation was accelerated for hERGT (p < .05 versus WT). Steady-state "window" current was positively shifted for hERGT with a modest increase in the window current peak. Under action potential (AP) voltage clamp, hERGT IhERG showed modestly increased current throughout the AP plateau phase with a significant increase in current integral during the AP. The observed consequences for hERGT IhERG of deletion of the two cytoplasmic regions may reflect changes to electrostatic interactions influencing the voltage sensor domain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。