Induction of Secondary Metabolite Biosynthesis by Deleting the Histone Deacetylase HdaA in the Marine-Derived Fungus Aspergillus terreus RA2905

通过删除海洋真菌土曲霉 RA2905 中的组蛋白去乙酰化酶 HdaA 来诱导次级代谢产物的生物合成

阅读:13
作者:Yao-Yao Zheng, Zhong-Lian Ma, Jing-Shuai Wu, Chang-Lun Shao, Guang-Shan Yao, Chang-Yun Wang

Abstract

Aspergillus terreus is well-known for its ability to biosynthesize valuable pharmaceuticals as well as structurally unique secondary metabolites. However, numerous promising cryptic secondary metabolites in this strain regulated by silent gene clusters remain unidentified. In this study, to further explore the secondary metabolite potential of A. terreus, the essential histone deacetylase hdaA gene was deleted in the marine-derived A. terreus RA2905. The results showed that HdaA plays a vital and negative regulatory role in both conidiation and secondary metabolism. Loss of HdaA in A. terreus RA2905 not only resulted in the improvement in butyrolactone production, but also activated the biosynthesis of new azaphilone derivatives. After scaled fermentation, two new azaphilones, asperterilones A and B (1 and 2), were isolated from ΔhdaA mutant. The planar structures of compounds 1 and 2 were undoubtedly characterized by NMR spectroscopy and mass spectrometry analysis. Their absolute configurations were assigned by circular dichroism spectra analysis and proposed biosynthesis pathway. Compounds 1 and 2 displayed moderate anti-Candida activities with the MIC values ranging from 18.0 to 47.9 μM, and compound 1 exhibited significant cytotoxic activity against human breast cancer cell line MDA-MB-231. This study provides novel evidence that hdaA plays essential and global roles in repressing secondary metabolite gene expression in fungi, and its deletion represents an efficient strategy to mine new compounds from A. terreus and other available marine-derived fungi.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。