Anti-atherogenic effect of hydrogen sulfide by over-expression of cystathionine gamma-lyase (CSE) gene

胱硫醚γ-裂解酶(CSE)基因过度表达对硫化氢的抗动脉粥样硬化作用

阅读:7
作者:Sau Ha Cheung, Wai Kei Kwok, Ka Fai To, James Yun Wong Lau

Abstract

Hydrogen sulfide (H2S) is an important gaseous signaling molecule that functions in physiological and pathological conditions, such as atherosclerosis. H2S dilates vessels and therefore has been suggested as an anti-atherogenic molecule. Since cystathionine gamma-lyase (CSE) enzyme is responsible for producing H2S in the cardiovascular system, we hypothesized that up-regulation of CSE expression in vivo with preservation of H2S bioactivity can slow down plaque formation and, can serve as a therapeutic strategy against atherosclerosis. In this study, C57BL/6 wild type mice (WT), ApoE knockout mice (KO) and transgenic ApoE knockout mice overexpressing CSE (Tg/KO) at four weeks of age were weaned. They were then fed with either normal or atherogenic diet for 12 weeks. At week 16, serial plasma lipid levels, body weight, and blood pressure were measured prior to euthanization of the mice and the size of atherosclerotic plaques at their aortic roots was measured. Tg/KO mice showed an increase in endogenous H2S production in aortic tissue, reduced atherosclerotic plaque sizes and attenuation in plasma lipid profiles. We also showed an up-regulation in plasma glutathionine peroxidase that could indicate reduced oxidative stress. Furthermore, there was an increase in expression of p-p53 and down regulation of inflammatory nuclear factor-kappa B (NF-κB) in aorta. To conclude, alteration of endogenous H2S by CSE gene activation was associated with reduced atherosclerosis in ApoE-deficient mice. Up-regulation of CSE/H2S pathway attenuates atherosclerosis and this would be a potential target for therapeutic intervention against its formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。