Myeloid deletion of SIRT1 aggravates serum transfer arthritis in mice via nuclear factor-κB activation

SIRT1 的髓系缺失通过核因子 κB 激活加重小鼠血清转移性关节炎

阅读:6
作者:Young-Sool Hah, Yun-Hong Cheon, Hye Song Lim, Hee Young Cho, Byung-Hyun Park, Sun-O Ka, Young-Rae Lee, Dong-Won Jeong, Hyun-Ok Kim, Myung-Kwan Han, Sang-Il Lee

Conclusion

Our study provides in vivo evidence that myeloid cell-specific deletion of SIRT1 exacerbates inflammatory arthritis via the hyperactivation of NF-κB signaling, which suggests that SIRT1 activation may be beneficial in the treatment of inflammatory arthritis.

Methods

mSIRT1 KO mice were generated using the loxP/Cre recombinase system. K/BxN serum transfer arthritis was induced in mSIRT1 KO mice and age-matched littermate loxP control mice. Arthritis severity was assessed by clinical and pathological scoring. The levels of inflammatory cytokines in the serum and joints were measured by ELISA. Migration, M1 polarization, cytokine production, osteoclastogenesis, and p65 acetylation were assessed in bone marrow-derived monocytes/macrophages (BMMs).

Objective

SIRT1 modulates the acetylation of the p65 subunit of nuclear factor-κB (NF-κB) and plays a pivotal role in the inflammatory response. This study sought to assess the role of SIRT1 in rheumatoid arthritis (RA) using a myeloid cell-specific SIRT1 knockout (mSIRT1 KO) mouse.

Results

mSIRT1 KO mice showed more severe inflammatory arthritis and aggravated pathological findings than control mice. These effects were paralleled by increases in IL-1, TNF-α, TRAP-positive osteoclasts, and F4/80⁺ macrophages in the ankles of mSIRT1 KO mice. In addition, BMMs from mSIRT1 KO mice displayed hyperacetylated p65 and increased NF-κB binding activity when compared to control mice, which resulted in increased M1 polarization, migration, pro-inflammatory cytokine production, and osteoclastogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。