Peculiar Properties of the La0.25Ba0.25Sr0.5Co0.8Fe0.2O3-δ Perovskite as Oxygen Reduction Electrocatalyst

La0.25Ba0.25Sr0.5Co0.8Fe0.2O3-δ钙钛矿作为氧还原电催化剂的特殊性能

阅读:9
作者:Chiara Aliotta, Maria Costa, Leonarda Francesca Liotta, Valeria La Parola, Giuliana Magnacca, Francesca Deganello

Abstract

The electrochemical reduction of molecular oxygen is a fundamental process in Solid Oxide Fuel Cells and requires high efficiency cathode materials. Two La0.25Ba0.25Sr0.5Co0.8Fe0.2O3-δ-based perovskite compounds were prepared by solution combustion synthesis, and characterized for their structural, microstructural, surface, redox and electrochemical properties as potential cathodes in comparison with Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La0.5Sr0.5Co0.8Fe0.2O3-δ perovskites. Results highlighted that calcination at 900 °C led to a "bi-perovskite heterostructure", where two different perovskite structures coexist, whereas at higher calcination temperatures a single-phase perovskite was formed. The results showed the effectiveness of the preparation procedures in co-doping the A-site of perovskites with barium and lanthanum as a strategy to optimize the cathode's properties. The formation of nanometric heterostructure co-doped in the A-site evidenced an improvement in oxygen vacancies' availability and in the redox properties, which promoted both processes: oxygen adsorption and oxygen ions drift, through the cathode material, to the electrolyte. A reduction in the total resistance was observed in the case of heterostructured material.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。