A single-domain antibody library based on a stability-engineered human VH3 scaffold

基于稳定性工程改造的人类VH3支架的单域抗体库

阅读:1
作者:Nam Ju Lee ,Mooyoung Jung ,Hye Young Yang ,Hyunbo Shim

Abstract

Using conventional immunoglobulin G (IgG) molecules as therapeutic agents presents several well-known disadvantages owing to their large size and structural complexity, negatively impacting development and production efficiency. Single-domain antibodies (sdAbs) are the smallest functional antibody format (~ 15 kDa) and represent a viable alternative to IgG in many applications. However, unlike natural single-domain antibodies, such as camelid VHH, the variable domains of conventional antibodies show poor physicochemical properties when expressed as sdAbs. This report identified stable sdAb variants of human VH3-23 from a framework region 2-randomized human VH library by phage display selection under thermal challenge. Synthetic complementarity determining region diversity was introduced to one of the selected variants with high thermal stability, expression level, and monomeric content to construct a human VH sdAb library. The library was validated by panning against a panel of antigens, and target-specific binders were identified and characterized for their affinity and biophysical properties. The results of this study suggest that a synthetic sdAb library based on a stability-engineered human VH scaffold could be a facile source of high-quality sdAb for many practical applications. Keywords: Nanobody; Phage display; Single-domain antibody; Stable scaffold.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。