Obesity-dependent dysregulation of glucose homeostasis in kinase suppressor of ras 2-/- mice

ras 2-/- 激酶抑制剂小鼠肥胖依赖性葡萄糖稳态失调

阅读:6
作者:MaLinda D Henry, Diane L Costanzo-Garvey, Paula J Klutho, Robert E Lewis

Abstract

Disruption of KSR2 in humans and mice decreases metabolic rate and induces obesity, coincident with dysregulation of glucose homeostasis. Relative to wild-type mice, ksr2(-/-) mice are small prior to weaning with normal glucose tolerance at 6 weeks of age, but demonstrate excess adiposity by 9 weeks and glucose intolerance by 12-14 weeks. Defects in AICAR tolerance, a measure of whole-body AMPK activation, are detectable only when ksr2(-/-) mice are obese. Food restriction prevents the obesity of adult ksr2(-/-) mice and normalizes glucose and AICAR sensitivity. Obesity and glucose intolerance return when ad lib feeding is restored to the diet-restricted mice, indicating that glucose dysregulation is secondary to obesity in ksr2(-/-) mice. The phenotype of C57BL/6 ksr2(-/-) mice, including obesity and obesity-related dysregulation of glucose homeostasis, recapitulates that of humans with KSR2 mutations, demonstrating the applicability of the C57BL/6 ksr2(-/-) mouse model to the study of the pathogenesis of human disease. These data implicate KSR2 as a physiological regulator of glucose metabolism during development affecting energy sensing, insulin signaling, and lipid storage, and demonstrate the value of the C57BL/6 ksr2(-/-) mouse model as a unique and relevant model system in which to develop and test therapeutic targets for the prevention and treatment of obesity, type 2 diabetes, and obesity-related metabolic disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。