Poly(Lactic-co-Glycolic Acid) Nanoparticle Delivery of Peptide Nucleic Acids In Vivo

聚乳酸-乙醇酸纳米颗粒在体内递送肽核酸

阅读:7
作者:Stanley N Oyaghire, Elias Quijano, Alexandra S Piotrowski-Daspit, W Mark Saltzman, Peter M Glazer

Abstract

Many important biological applications of peptide nucleic acids (PNAs) target nucleic acid binding in eukaryotic cells, which requires PNA translocation across at least one membrane barrier. The delivery challenge is further exacerbated for applications in whole organisms, where clearance mechanisms rapidly deplete and/or deactivate exogenous agents. We have demonstrated that nanoparticles (NPs) composed of biodegradable polymers can encapsulate and release PNAs (alone or with co-reagents) in amounts sufficient to mediate desired effects in vitro and in vivo without deleterious reactions in the recipient cell or organism. For example, poly(lactic-co-glycolic acid) (PLGA) NPs can encapsulate and deliver PNAs and accompanying reagents to mediate gene editing outcomes in cells and animals, or PNAs alone to target oncogenic drivers in cells and correct cancer phenotypes in animal models. In this chapter, we provide a primer on PNA-induced gene editing and microRNA targeting-the two PNA-based biotechnological applications where NPs have enhanced and/or enabled in vivo demonstrations-as well as an introduction to the PLGA material and detailed protocols for formulation and robust characterization of PNA/DNA-laden PLGA NPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。