Abstract
Neisseria gonorrhoeae employs high-affinity metal acquisition systems to obtain necessary nutrients, such as iron (Fe) and zinc (Zn) from the environment. Because growth and replication depend upon successful metal acquisition, these high-affinity uptake systems are important virulence factors. Expression of metal acquisition systems is tightly controlled and preferentially expressed under low-metal conditions. Therefore, in order to optimally produce these transport proteins and study them in vitro, growth media must be deployed that mimic low-metal conditions. This chapter describes the chelators, media, and culturing conditions that can generate low-metal in vitro growth conditions.
