HIF1α regulates single differentiated glioma cell dedifferentiation to stem-like cell phenotypes with high tumorigenic potential under hypoxia

HIF1α 调节单分化胶质瘤细胞去分化为缺氧条件下具有高致瘤潜能的干细胞样细胞表型

阅读:5
作者:Pan Wang, Chuan Lan, Shuanglong Xiong, Xiuwen Zhao, You'an Shan, Rong Hu, Wenwu Wan, Shuangjiang Yu, Bin Liao, Guangzhi Li, Junwei Wang, Dewei Zou, Bing Chen, Hua Feng, Nan Wu

Abstract

The standard treatment for Glioblastoma multiforme (GBM) is surgical resection and subsequent radiotherapy and chemotherapy. Surgical resection of GBM is typically restricted because of its invasive growth, which results in residual tumor cells including glioma stem cells (GSCs) and differentiated cells. Recurrence has been previously thought to occur as a result of these GSCs, and hypoxic microenvironment maintains the GSCs stemness also plays an important role. Summarizing traditional studies and we find many researchers ignored the influence of hypoxia on differentiated cells. We hypothesized that the residual differentiated cells may be dedifferentiated to GSC-like cells under hypoxia and play a crucial role in the rapid, high-frequency recurrence of GBM. Therefore, isolated CD133-CD15-NESTIN- cells were prepared as single-cell culture and treated with hypoxia. More than 95% of the surviving single differentiated CD133-CD15-NESTIN- cell dedifferentiated into tumorigenic CD133+CD15+NESTIN+ GSCs, and this process was regulated by hypoxia inducible factor-1α. Moreover, the serum also played an important role in this dedifferentiation. These findings challenge the traditional glioma cell heterogeneity model, cell division model and glioma malignancy development model. Our study also highlights the mechanism of GBM recurrence and the importance of anti-hypoxia therapy. In addition to GSCs, residual differentiated tumor cells also substantially contribute to treatment resistance and the rapid, high recurrence of GBM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。