Magnesium modulates ROMK channel-mediated potassium secretion

镁调节 ROMK 通道介导的钾分泌

阅读:8
作者:Lei Yang, Gustavo Frindt, Lawrence G Palmer

Abstract

The ability of intracellular and extracellular Mg(2+) to block secretory K(+) currents through ROMK channels under physiologic conditions is incompletely understood. We expressed ROMK2 channels in Xenopus oocytes and measured unitary currents in the inside-out and cell-attached modes of the patch-clamp technique. With 110 mM K(+) on both sides of the membrane, 0.2 to 5 mM Mg(2+) on the cytoplasmic side reduced outward currents, but not inward currents, at V(m) > 0. With 11 or 1.1 mM extracellular K(+) ([K(+)](o)), ≥0.2 mM Mg(2+) blocked outward currents in the physiologic V(m) range (0 to -60 mV). With decreasing [K(+)](o), the apparent dissociation constant of the blocker decreased, but the voltage dependence of block did not significantly change. Whole-cell recordings from principal cells of rat cortical collecting ducts revealed similar inhibitory effects of intracellular Mg(2+). Mg(2+) added to the extracellular solution also reduced single-channel currents with an affinity that increased as [K(+)](o) decreased. In conclusion, physiologic concentrations of intracellular and extracellular Mg(2+) can influence secretory K(+) currents through ROMK channels. These effects could play a role in the modulation of K(+) transport under conditions of K(+) and/or Mg(2+) depletion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。