Bio-Inspired Nanodelivery Platform: Platelet Membrane-Cloaked Genistein Nanosystem for Targeted Lung Cancer Therapy

生物启发纳米递送平台:血小板膜包裹染料木黄酮纳米系统用于肺癌靶向治疗

阅读:8
作者:Rui Gao #, Peihong Lin #, Wenjing Yang #, Zhengyu Fang, Chunxiao Gao, Bin Cheng, Jie Fang, Wenying Yu

Background

Genistein (Gen), a natural polyphenolic compound, has emerged as a promising candidate for lung cancer treatment. However, the potential clinical application of Gen is limited due to its poor solubility, low bioavailability, and toxic side effects. To address these challenges, a biomimetic delivery platform with cell membranes derived from natural cells as carrier material was constructed. This innovative approach aims to facilitate targeted drug delivery and solve the problem of biocompatibility of synthetic materials.

Conclusion

Biomimetic nanomedicine provides a new strategy for the precision treatment of lung cancer in clinical practice.

Methods

First, the liposomes (LPs) loaded with Gen (LPs@Gen) was prepared using the ethanol injection method. Subsequently, PLTM-LPs@Gen was obtained through co-extrusion after mixing platelet membrane (PLTM) and LPs@Gen. Additionally, the biological and physicochemical properties of PLTM-LPs@Gen were investigated. Finally, the targeting ability, therapeutic efficacy, and safety of PLTM-LPs@Gen for lung cancer were evaluated using both a cell model and a tumor-bearing nude mouse model.

Results

The optimal preparation ratio for LPs@Gen was Gen: soybean lecithin: cholesterol: DSPE-PEG2000 (3:30:5:10, mass ratio), while the ideal fusion ratio of LPs@Gen and PLTM was 1:1. The particle size of PLTM-LPs@Gen was 108.33 ± 1.06 nm, and the encapsulation efficiency and drug loading were 94.29% and 3.09% respectively. Gen was released continuously and slowly from PLTM-LPs@Gen. Moreover, PLTM-LPs@Gen exhibited good stability within one week. The results of in vitro cellular uptake and in vivo distribution experiments indicated that the carrier material, PLTM-LPs, has the immune escape ability and tumor targeting ability. Consequently, it showed better therapeutic effects than free drugs and traditional LPs in vitro and in vivo tumor models. In addition, safety experiments demonstrated that PLTM-LPs@Gen possesses good biocompatibility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。