Identification of functional single nucleotide polymorphisms in the branchpoint site

鉴定分支点位点的功能性单核苷酸多态性

阅读:7
作者:Hung-Lun Chiang, Jer-Yuarn Wu, Yuan-Tsong Chen

Background

The human genome contains millions of single nucleotide polymorphisms (SNPs); many of these SNPs are intronic and have unknown functional significance. SNPs occurring within intron branchpoint sites, especially at the adenine (A), would presumably affect splicing; however, this has not been systematically studied. We employed a splicing prediction tool to identify human intron branchpoint sites and screened dbSNP for identifying SNPs located in the predicted sites to generate a genome-wide branchpoint site SNP database.

Conclusions

We generated a high-confidence genome-wide branchpoint site SNP database, experimentally verified the importance of A in the branchpoint, and suggested that other nearby As can protect branchpoint A substitution from abnormal splicing.

Results

We identified 600 SNPs located within branchpoint sites; among which, 216 showed a change in A. After scoring the SNPs by counting the As in the ± 10 nucleotide region, only four SNPs were identified without additional As (rs13296170, rs12769205, rs75434223, and rs67785924). Using minigene constructs, we examined the effects of these SNPs on splicing. The three SNPs (rs13296170, rs12769205, and rs75434223) with nucleotide substitution at the A position resulted in abnormal splicing (exon skipping and/or intron inclusion). However, rs67785924, a 5-bp deletion that abolished the branchpoint A nucleotide, exhibited normal RNA splicing pattern, presumably using two of the downstream As as alternative branchpoints. The influence of additional As on splicing was further confirmed by studying rs2733532, which contains three additional As in the ± 10 nucleotide region. Conclusions: We generated a high-confidence genome-wide branchpoint site SNP database, experimentally verified the importance of A in the branchpoint, and suggested that other nearby As can protect branchpoint A substitution from abnormal splicing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。